Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Bernstein-Gelfand-Gelfand resolution for Kac-Moody algebras and quantized enveloping algebras

A Bernstein-Gelfand-Gelfand resolution for arbitrary Kac-Moody algebras and arbitrary subsets of the set of simple roots is proven. Moreover, quantum group analogs of the Bernstein-Gelfand-Gelfand resolution for symmetrizable Kac-Moody algebras are established. For quantized enveloping algebras with fixed deformation parameter q ∈ C \ {0} exactness is proven for all q which are not a root of un...

متن کامل

Differential forms via the Bernstein-Gelfand-Gelfand resolution for quantized irreducible flag manifolds

The quantum group version of the Bernstein-Gelfand-Gelfand resolution is used to construct a double complex of Uq(g)-modules with exact rows and columns. The locally finite dual of its total complex is identified with the de Rham complex for quantized irreducible flag manifolds. MSC: 17B37, 58B32

متن کامل

A generalization of the category O of Bernstein–Gelfand–Gelfand

In the study of simple modules over a simple complex Lie algebra, Bernstein, Gelfand and Gelfand introduced a category of modules which provides a natural setting for highest weight modules. In this note, we define a family of categories which generalizes the BGG category. We classify the simple modules for some of these categories. As a consequence we show that these categories are semisimple....

متن کامل

A characterization of generalized Kac - Moody algebras

Generalized Kac-Moody algebras can be described in two ways: either using generators and relations, or as Lie algebras with an almost positive definite symmetric contravariant bilinear form. Unfortunately it is usually hard to check either of these conditions for any naturally occurring Lie algebra. In this paper we give a third characterization of generalized Kac-Moody algebras which is easier...

متن کامل

Ja n 20 00 BERNSTEIN – GELFAND – GELFAND SEQUENCES

This paper is devoted to the study of geometric structures modeled on homogeneous spaces G/P , where G is a real or complex semisimple Lie group and P ⊂ G is a parabolic subgroup. We use methods from differential geometry and very elementary finite–dimensional representation theory to construct sequences of invariant differential operators for such geometries, both in the smooth and the holomor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1993

ISSN: 0386-2194

DOI: 10.3792/pjaa.69.27